Saturday, January 19, 2008

Mathematical Snowstorms

computer generated snowflake
Computer-generated snowflake (Janko Gravner and David Griffeath/courtesy graphic)
Three-dimensional snowflakes can now be grown in a computer using a program developed by mathematicians at UC Davis and the University of Wisconsin-Madison.

No two snowflakes are truly alike, but they can be very similar to each other, said Janko Gravner, a mathematics professor at UC Davis. Why they are not more different from each other is a mystery, Gravner said. Being able to model the process might answer some of these questions.

Intricate, incredibly variable and beautiful, snowflakes have been puzzling mathematicians since at least 1611, when Johannes Kepler predicted that the six-pointed structure would reflect an underlying crystal structure.

Snowflakes grow from water vapor around some kind of nucleus, such as a bit of dust. The surface of the growing crystal is a complex, semi-liquid layer where water molecules from the surrounding vapor can attach or detach. Water molecules are more likely to attach at concavities in the crystal shape.

The model built by Gravner and David Griffeath of the University of Wisconsin-Madison takes these factors, as well as temperature, atmospheric pressure and water vapor density, into account. By running the model under different conditions, the researchers were able to recreate a wide range of natural snowflake shapes.

Gravner and Griffeath also managed to generate some novel snowflakes, such as a "butterflake" that looks like three butterflies stuck together along the body. Gravner said there seemed to be no reason these shapes could not appear in nature, but they would be very fragile and unstable.

from a news release of UC Davis, "Math Models Snowflakes", Jan 16, 2008
These links are checked on the date of the article. As the article ages, some links may become invalid

Go To for all the news
See Get Off The Couch

No comments:

Related Posts with Thumbnails